3.2.17 \(\int \frac {(a+b \tan (e+f x))^2 (A+B \tan (e+f x)+C \tan ^2(e+f x))}{(c+d \tan (e+f x))^{3/2}} \, dx\) [117]

Optimal. Leaf size=343 \[ -\frac {(a-i b)^2 (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(c-i d)^{3/2} f}-\frac {(a+i b)^2 (B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(c+i d)^{3/2} f}-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f} \]

[Out]

-(a-I*b)^2*(I*A+B-I*C)*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/(c-I*d)^(3/2)/f-(a+I*b)^2*(B-I*(A-C))*arc
tanh((c+d*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/(c+I*d)^(3/2)/f+2/3*b*(6*a*d*(2*c^2*C-B*c*d+(A+C)*d^2)-b*(8*c^3*C-6
*B*c^2*d+c*(3*A+5*C)*d^2-3*B*d^3))*(c+d*tan(f*x+e))^(1/2)/d^3/(c^2+d^2)/f+2/3*b^2*(4*c^2*C-3*B*c*d+(3*A+C)*d^2
)*(c+d*tan(f*x+e))^(1/2)*tan(f*x+e)/d^2/(c^2+d^2)/f-2*(A*d^2-B*c*d+C*c^2)*(a+b*tan(f*x+e))^2/d/(c^2+d^2)/f/(c+
d*tan(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.90, antiderivative size = 343, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 7, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.149, Rules used = {3726, 3718, 3711, 3620, 3618, 65, 214} \begin {gather*} -\frac {2 \left (A d^2-B c d+c^2 C\right ) (a+b \tan (e+f x))^2}{d f \left (c^2+d^2\right ) \sqrt {c+d \tan (e+f x)}}+\frac {2 b \sqrt {c+d \tan (e+f x)} \left (6 a d \left (d^2 (A+C)-B c d+2 c^2 C\right )-b \left (c d^2 (3 A+5 C)-6 B c^2 d-3 B d^3+8 c^3 C\right )\right )}{3 d^3 f \left (c^2+d^2\right )}-\frac {(a-i b)^2 (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f (c-i d)^{3/2}}-\frac {(a+i b)^2 (B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f (c+i d)^{3/2}}+\frac {2 b^2 \tan (e+f x) \left (d^2 (3 A+C)-3 B c d+4 c^2 C\right ) \sqrt {c+d \tan (e+f x)}}{3 d^2 f \left (c^2+d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + b*Tan[e + f*x])^2*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

-(((a - I*b)^2*(I*A + B - I*C)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/((c - I*d)^(3/2)*f)) - ((a + I
*b)^2*(B - I*(A - C))*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c + I*d]])/((c + I*d)^(3/2)*f) - (2*(c^2*C - B*c*d
 + A*d^2)*(a + b*Tan[e + f*x])^2)/(d*(c^2 + d^2)*f*Sqrt[c + d*Tan[e + f*x]]) + (2*b*(6*a*d*(2*c^2*C - B*c*d +
(A + C)*d^2) - b*(8*c^3*C - 6*B*c^2*d + c*(3*A + 5*C)*d^2 - 3*B*d^3))*Sqrt[c + d*Tan[e + f*x]])/(3*d^3*(c^2 +
d^2)*f) + (2*b^2*(4*c^2*C - 3*B*c*d + (3*A + C)*d^2)*Tan[e + f*x]*Sqrt[c + d*Tan[e + f*x]])/(3*d^2*(c^2 + d^2)
*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 3618

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c*(
d/f), Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3620

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3711

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&&  !LeQ[m, -1]

Rule 3718

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])
^(n + 1)/(d*f*(n + 2))), x] - Dist[1/(d*(n + 2)), Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b
 + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] &&  !LtQ[n, -1]

Rule 3726

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c*(c*C - B*d))*(a + b*Ta
n[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Dist[1/(d*(n + 1)*(c^2 + d^2)), I
nt[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*c
*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n + 1
) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+b \tan (e+f x))^2 \left (A+B \tan (e+f x)+C \tan ^2(e+f x)\right )}{(c+d \tan (e+f x))^{3/2}} \, dx &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 \int \frac {(a+b \tan (e+f x)) \left (\frac {1}{2} \left (A d (a c+4 b d)+2 \left (2 b c-\frac {a d}{2}\right ) (c C-B d)\right )+\frac {1}{2} d ((A-C) (b c-a d)+B (a c+b d)) \tan (e+f x)+\frac {1}{2} b \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan ^2(e+f x)\right )}{\sqrt {c+d \tan (e+f x)}} \, dx}{d \left (c^2+d^2\right )}\\ &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}-\frac {4 \int \frac {\frac {1}{4} \left (2 b^2 c \left (4 c^2 C-3 B c d+(3 A+C) d^2\right )-3 a d (A d (a c+4 b d)+(4 b c-a d) (c C-B d))\right )-\frac {3}{4} d^2 \left (2 a b (A c-c C+B d)+a^2 (B c-(A-C) d)-b^2 (B c-(A-C) d)\right ) \tan (e+f x)-\frac {1}{4} b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \tan ^2(e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{3 d^2 \left (c^2+d^2\right )}\\ &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}-\frac {4 \int \frac {-\frac {3}{4} d^2 \left (a^2 (A c-c C+B d)-b^2 (A c-c C+B d)-2 a b (B c-(A-C) d)\right )-\frac {3}{4} d^2 \left (2 a b (A c-c C+B d)+a^2 (B c-(A-C) d)-b^2 (B c-(A-C) d)\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{3 d^2 \left (c^2+d^2\right )}\\ &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}+\frac {\left ((a-i b)^2 (A-i B-C)\right ) \int \frac {1+i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{2 (c-i d)}+\frac {\left ((a+i b)^2 (A+i B-C)\right ) \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}} \, dx}{2 (c+i d)}\\ &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}+\frac {\left ((a-i b)^2 (i A+B-i C)\right ) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c-i d x}} \, dx,x,i \tan (e+f x)\right )}{2 (c-i d) f}-\frac {\left (i (a+i b)^2 (A+i B-C)\right ) \text {Subst}\left (\int \frac {1}{(-1+x) \sqrt {c+i d x}} \, dx,x,-i \tan (e+f x)\right )}{2 (c+i d) f}\\ &=-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}-\frac {\left ((a-i b)^2 (A-i B-C)\right ) \text {Subst}\left (\int \frac {1}{-1-\frac {i c}{d}+\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{(c-i d) d f}-\frac {\left ((a+i b)^2 (A+i B-C)\right ) \text {Subst}\left (\int \frac {1}{-1+\frac {i c}{d}-\frac {i x^2}{d}} \, dx,x,\sqrt {c+d \tan (e+f x)}\right )}{(c+i d) d f}\\ &=-\frac {(a-i b)^2 (i A+B-i C) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{(c-i d)^{3/2} f}-\frac {(a+i b)^2 (B-i (A-C)) \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{(c+i d)^{3/2} f}-\frac {2 \left (c^2 C-B c d+A d^2\right ) (a+b \tan (e+f x))^2}{d \left (c^2+d^2\right ) f \sqrt {c+d \tan (e+f x)}}+\frac {2 b \left (6 a d \left (2 c^2 C-B c d+(A+C) d^2\right )-b \left (8 c^3 C-6 B c^2 d+c (3 A+5 C) d^2-3 B d^3\right )\right ) \sqrt {c+d \tan (e+f x)}}{3 d^3 \left (c^2+d^2\right ) f}+\frac {2 b^2 \left (4 c^2 C-3 B c d+(3 A+C) d^2\right ) \tan (e+f x) \sqrt {c+d \tan (e+f x)}}{3 d^2 \left (c^2+d^2\right ) f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 6.35, size = 476, normalized size = 1.39 \begin {gather*} \frac {2 C (a+b \tan (e+f x))^2}{3 d f \sqrt {c+d \tan (e+f x)}}+\frac {2 \left (\frac {(-4 b c C+3 b B d+4 a C d) (a+b \tan (e+f x))}{d f \sqrt {c+d \tan (e+f x)}}+\frac {-\frac {2 \left (8 b^2 c^2 C-6 b^2 B c d-16 a b c C d+3 A b^2 d^2+9 a b B d^2+8 a^2 C d^2-3 b^2 C d^2\right )}{d \sqrt {c+d \tan (e+f x)}}+\frac {2 \left (\frac {3}{2} \left (a^2 B-b^2 B+2 a b (A-C)\right ) d^2 \left (-\frac {i \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{\sqrt {c-i d}}+\frac {i \tanh ^{-1}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{\sqrt {c+i d}}\right )+\frac {\left (-\frac {3}{2} c \left (a^2 B-b^2 B+2 a b (A-C)\right ) d^3-\frac {3}{2} \left (2 a b B-a^2 (A-C)+b^2 (A-C)\right ) d^4\right ) \left (-\frac {\, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c+d \tan (e+f x)}{c-i d}\right )}{(i c+d) \sqrt {c+d \tan (e+f x)}}+\frac {\, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c+d \tan (e+f x)}{c+i d}\right )}{(i c-d) \sqrt {c+d \tan (e+f x)}}\right )}{d}\right )}{d}}{2 d f}\right )}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + b*Tan[e + f*x])^2*(A + B*Tan[e + f*x] + C*Tan[e + f*x]^2))/(c + d*Tan[e + f*x])^(3/2),x]

[Out]

(2*C*(a + b*Tan[e + f*x])^2)/(3*d*f*Sqrt[c + d*Tan[e + f*x]]) + (2*(((-4*b*c*C + 3*b*B*d + 4*a*C*d)*(a + b*Tan
[e + f*x]))/(d*f*Sqrt[c + d*Tan[e + f*x]]) + ((-2*(8*b^2*c^2*C - 6*b^2*B*c*d - 16*a*b*c*C*d + 3*A*b^2*d^2 + 9*
a*b*B*d^2 + 8*a^2*C*d^2 - 3*b^2*C*d^2))/(d*Sqrt[c + d*Tan[e + f*x]]) + (2*((3*(a^2*B - b^2*B + 2*a*b*(A - C))*
d^2*(((-I)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]])/Sqrt[c - I*d] + (I*ArcTanh[Sqrt[c + d*Tan[e + f*x]
]/Sqrt[c + I*d]])/Sqrt[c + I*d]))/2 + (((-3*c*(a^2*B - b^2*B + 2*a*b*(A - C))*d^3)/2 - (3*(2*a*b*B - a^2*(A -
C) + b^2*(A - C))*d^4)/2)*(-(Hypergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c - I*d)]/((I*c + d)*Sqrt[c
 + d*Tan[e + f*x]])) + Hypergeometric2F1[-1/2, 1, 1/2, (c + d*Tan[e + f*x])/(c + I*d)]/((I*c - d)*Sqrt[c + d*T
an[e + f*x]])))/d))/d)/(2*d*f)))/(3*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(9978\) vs. \(2(312)=624\).
time = 0.53, size = 9979, normalized size = 29.09

method result size
derivativedivides \(\text {Expression too large to display}\) \(9979\)
default \(\text {Expression too large to display}\) \(9979\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \tan {\left (e + f x \right )}\right )^{2} \left (A + B \tan {\left (e + f x \right )} + C \tan ^{2}{\left (e + f x \right )}\right )}{\left (c + d \tan {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))**2*(A+B*tan(f*x+e)+C*tan(f*x+e)**2)/(c+d*tan(f*x+e))**(3/2),x)

[Out]

Integral((a + b*tan(e + f*x))**2*(A + B*tan(e + f*x) + C*tan(e + f*x)**2)/(c + d*tan(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e))^2*(A+B*tan(f*x+e)+C*tan(f*x+e)^2)/(c+d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.The choi
ce was done

________________________________________________________________________________________

Mupad [B]
time = 66.25, size = 2500, normalized size = 7.29 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*tan(e + f*x))^2*(A + B*tan(e + f*x) + C*tan(e + f*x)^2))/(c + d*tan(e + f*x))^(3/2),x)

[Out]

(2*(B*b^2*c^3 + B*a^2*c*d^2 - 2*B*a*b*c^2*d))/(d^2*f*(c^2 + d^2)*(c + d*tan(e + f*x))^(1/2)) - atan((((-(((8*B
^2*a^4*c^3*f^2 + 8*B^2*b^4*c^3*f^2 - 48*B^2*a^2*b^2*c^3*f^2 + 32*B^2*a*b^3*d^3*f^2 - 32*B^2*a^3*b*d^3*f^2 - 24
*B^2*a^4*c*d^2*f^2 - 24*B^2*b^4*c*d^2*f^2 - 96*B^2*a*b^3*c^2*d*f^2 + 96*B^2*a^3*b*c^2*d*f^2 + 144*B^2*a^2*b^2*
c*d^2*f^2)^2/4 - (16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4)*(B^4*a^8 + B^4*b^8 + 4*B^4*a^2*b^
6 + 6*B^4*a^4*b^4 + 4*B^4*a^6*b^2))^(1/2) - 4*B^2*a^4*c^3*f^2 - 4*B^2*b^4*c^3*f^2 + 24*B^2*a^2*b^2*c^3*f^2 - 1
6*B^2*a*b^3*d^3*f^2 + 16*B^2*a^3*b*d^3*f^2 + 12*B^2*a^4*c*d^2*f^2 + 12*B^2*b^4*c*d^2*f^2 + 48*B^2*a*b^3*c^2*d*
f^2 - 48*B^2*a^3*b*c^2*d*f^2 - 72*B^2*a^2*b^2*c*d^2*f^2)/(16*(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^
4)))^(1/2)*((c + d*tan(e + f*x))^(1/2)*(-(((8*B^2*a^4*c^3*f^2 + 8*B^2*b^4*c^3*f^2 - 48*B^2*a^2*b^2*c^3*f^2 + 3
2*B^2*a*b^3*d^3*f^2 - 32*B^2*a^3*b*d^3*f^2 - 24*B^2*a^4*c*d^2*f^2 - 24*B^2*b^4*c*d^2*f^2 - 96*B^2*a*b^3*c^2*d*
f^2 + 96*B^2*a^3*b*c^2*d*f^2 + 144*B^2*a^2*b^2*c*d^2*f^2)^2/4 - (16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48
*c^4*d^2*f^4)*(B^4*a^8 + B^4*b^8 + 4*B^4*a^2*b^6 + 6*B^4*a^4*b^4 + 4*B^4*a^6*b^2))^(1/2) - 4*B^2*a^4*c^3*f^2 -
 4*B^2*b^4*c^3*f^2 + 24*B^2*a^2*b^2*c^3*f^2 - 16*B^2*a*b^3*d^3*f^2 + 16*B^2*a^3*b*d^3*f^2 + 12*B^2*a^4*c*d^2*f
^2 + 12*B^2*b^4*c*d^2*f^2 + 48*B^2*a*b^3*c^2*d*f^2 - 48*B^2*a^3*b*c^2*d*f^2 - 72*B^2*a^2*b^2*c*d^2*f^2)/(16*(c
^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4)))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5
+ 640*c^7*d^6*f^5 + 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5) - 32*B*a^2*d^12*f^4 + 32*B*b^2*d^12*f^4 - 96*B*a^2*c^2*
d^10*f^4 - 64*B*a^2*c^4*d^8*f^4 + 64*B*a^2*c^6*d^6*f^4 + 96*B*a^2*c^8*d^4*f^4 + 32*B*a^2*c^10*d^2*f^4 + 96*B*b
^2*c^2*d^10*f^4 + 64*B*b^2*c^4*d^8*f^4 - 64*B*b^2*c^6*d^6*f^4 - 96*B*b^2*c^8*d^4*f^4 - 32*B*b^2*c^10*d^2*f^4 +
 128*B*a*b*c*d^11*f^4 + 512*B*a*b*c^3*d^9*f^4 + 768*B*a*b*c^5*d^7*f^4 + 512*B*a*b*c^7*d^5*f^4 + 128*B*a*b*c^9*
d^3*f^4) + (c + d*tan(e + f*x))^(1/2)*(16*B^2*a^4*d^10*f^3 + 16*B^2*b^4*d^10*f^3 - 96*B^2*a^2*b^2*d^10*f^3 + 3
2*B^2*a^4*c^2*d^8*f^3 - 32*B^2*a^4*c^6*d^4*f^3 - 16*B^2*a^4*c^8*d^2*f^3 + 32*B^2*b^4*c^2*d^8*f^3 - 32*B^2*b^4*
c^6*d^4*f^3 - 16*B^2*b^4*c^8*d^2*f^3 + 128*B^2*a*b^3*c*d^9*f^3 - 128*B^2*a^3*b*c*d^9*f^3 + 384*B^2*a*b^3*c^3*d
^7*f^3 + 384*B^2*a*b^3*c^5*d^5*f^3 + 128*B^2*a*b^3*c^7*d^3*f^3 - 384*B^2*a^3*b*c^3*d^7*f^3 - 384*B^2*a^3*b*c^5
*d^5*f^3 - 128*B^2*a^3*b*c^7*d^3*f^3 - 192*B^2*a^2*b^2*c^2*d^8*f^3 + 192*B^2*a^2*b^2*c^6*d^4*f^3 + 96*B^2*a^2*
b^2*c^8*d^2*f^3))*(-(((8*B^2*a^4*c^3*f^2 + 8*B^2*b^4*c^3*f^2 - 48*B^2*a^2*b^2*c^3*f^2 + 32*B^2*a*b^3*d^3*f^2 -
 32*B^2*a^3*b*d^3*f^2 - 24*B^2*a^4*c*d^2*f^2 - 24*B^2*b^4*c*d^2*f^2 - 96*B^2*a*b^3*c^2*d*f^2 + 96*B^2*a^3*b*c^
2*d*f^2 + 144*B^2*a^2*b^2*c*d^2*f^2)^2/4 - (16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4)*(B^4*a^
8 + B^4*b^8 + 4*B^4*a^2*b^6 + 6*B^4*a^4*b^4 + 4*B^4*a^6*b^2))^(1/2) - 4*B^2*a^4*c^3*f^2 - 4*B^2*b^4*c^3*f^2 +
24*B^2*a^2*b^2*c^3*f^2 - 16*B^2*a*b^3*d^3*f^2 + 16*B^2*a^3*b*d^3*f^2 + 12*B^2*a^4*c*d^2*f^2 + 12*B^2*b^4*c*d^2
*f^2 + 48*B^2*a*b^3*c^2*d*f^2 - 48*B^2*a^3*b*c^2*d*f^2 - 72*B^2*a^2*b^2*c*d^2*f^2)/(16*(c^6*f^4 + d^6*f^4 + 3*
c^2*d^4*f^4 + 3*c^4*d^2*f^4)))^(1/2)*1i - ((-(((8*B^2*a^4*c^3*f^2 + 8*B^2*b^4*c^3*f^2 - 48*B^2*a^2*b^2*c^3*f^2
 + 32*B^2*a*b^3*d^3*f^2 - 32*B^2*a^3*b*d^3*f^2 - 24*B^2*a^4*c*d^2*f^2 - 24*B^2*b^4*c*d^2*f^2 - 96*B^2*a*b^3*c^
2*d*f^2 + 96*B^2*a^3*b*c^2*d*f^2 + 144*B^2*a^2*b^2*c*d^2*f^2)^2/4 - (16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4
+ 48*c^4*d^2*f^4)*(B^4*a^8 + B^4*b^8 + 4*B^4*a^2*b^6 + 6*B^4*a^4*b^4 + 4*B^4*a^6*b^2))^(1/2) - 4*B^2*a^4*c^3*f
^2 - 4*B^2*b^4*c^3*f^2 + 24*B^2*a^2*b^2*c^3*f^2 - 16*B^2*a*b^3*d^3*f^2 + 16*B^2*a^3*b*d^3*f^2 + 12*B^2*a^4*c*d
^2*f^2 + 12*B^2*b^4*c*d^2*f^2 + 48*B^2*a*b^3*c^2*d*f^2 - 48*B^2*a^3*b*c^2*d*f^2 - 72*B^2*a^2*b^2*c*d^2*f^2)/(1
6*(c^6*f^4 + d^6*f^4 + 3*c^2*d^4*f^4 + 3*c^4*d^2*f^4)))^(1/2)*(32*B*b^2*d^12*f^4 - 32*B*a^2*d^12*f^4 - (c + d*
tan(e + f*x))^(1/2)*(-(((8*B^2*a^4*c^3*f^2 + 8*B^2*b^4*c^3*f^2 - 48*B^2*a^2*b^2*c^3*f^2 + 32*B^2*a*b^3*d^3*f^2
 - 32*B^2*a^3*b*d^3*f^2 - 24*B^2*a^4*c*d^2*f^2 - 24*B^2*b^4*c*d^2*f^2 - 96*B^2*a*b^3*c^2*d*f^2 + 96*B^2*a^3*b*
c^2*d*f^2 + 144*B^2*a^2*b^2*c*d^2*f^2)^2/4 - (16*c^6*f^4 + 16*d^6*f^4 + 48*c^2*d^4*f^4 + 48*c^4*d^2*f^4)*(B^4*
a^8 + B^4*b^8 + 4*B^4*a^2*b^6 + 6*B^4*a^4*b^4 + 4*B^4*a^6*b^2))^(1/2) - 4*B^2*a^4*c^3*f^2 - 4*B^2*b^4*c^3*f^2
+ 24*B^2*a^2*b^2*c^3*f^2 - 16*B^2*a*b^3*d^3*f^2 + 16*B^2*a^3*b*d^3*f^2 + 12*B^2*a^4*c*d^2*f^2 + 12*B^2*b^4*c*d
^2*f^2 + 48*B^2*a*b^3*c^2*d*f^2 - 48*B^2*a^3*b*c^2*d*f^2 - 72*B^2*a^2*b^2*c*d^2*f^2)/(16*(c^6*f^4 + d^6*f^4 +
3*c^2*d^4*f^4 + 3*c^4*d^2*f^4)))^(1/2)*(64*c*d^12*f^5 + 320*c^3*d^10*f^5 + 640*c^5*d^8*f^5 + 640*c^7*d^6*f^5 +
 320*c^9*d^4*f^5 + 64*c^11*d^2*f^5) - 96*B*a^2*c^2*d^10*f^4 - 64*B*a^2*c^4*d^8*f^4 + 64*B*a^2*c^6*d^6*f^4 + 96
*B*a^2*c^8*d^4*f^4 + 32*B*a^2*c^10*d^2*f^4 + 96*B*b^2*c^2*d^10*f^4 + 64*B*b^2*c^4*d^8*f^4 - 64*B*b^2*c^6*d^6*f
^4 - 96*B*b^2*c^8*d^4*f^4 - 32*B*b^2*c^10*d^2*f...

________________________________________________________________________________________